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Abstract. Implication rules have been used in uncertainty reasoning
systems to confirm and draw hypotheses or conclusions. However a m_-
jor bottleneck in developing such systems lies in the elicitation of these
rules. This paper empirically examines the performance of evidential in-

ferencing with implication networks generated using a rule induction tool
called KAT. KAT utilizes an algorithm for the statistical analysis of em-
piricai case data, and hence reduces the knowledge engineering efforts
and biases in subjective implication certainty assignment. The paper de-
scribes several experiments in which real-world diagnostic problems were
investigated; namely, medical diagnostics. In particular, it attempts to
show that (1) with a limited number of case samples, KAT is capable
of inducing implication networks useful for making evidential inferences
based on partial observations, and (2) observation driven by a network
entropy optimization mechanism is effective in reducing the uncertainty
of predicted events.
Key Words-- implication rules, data mining, medical databases, diag-
nostic, entropy search.

1 Introduction

One of the important aspects of using expert systems technology to solve real-

world problems lies in the management of domain-knowledge uncertainty. Several

methods of reasoning under uncertainty have been proposed in the past [1] [4]

[13] [15] [17]. All these approaches require a representation of domain knowledge.
Generally speaking, constructing a valid knowledge representation is a time-

consuming task and often subject to opinion biases or semantics invalidity if it is

built purely based on human heuristics. To overcome the difficulties in knowledge
acquisition, several investigations have been carried out in recent years to explore

the effectiveness and validity of automated means such as algorithms to perform
this task.

Pitas et al. [16] have proposed a method of learning general rules from specific

instances based on a minimal entropy criterion. Geiger [9] has formulated a

learning algorithm for uncovering a Bayesian conditional dependence tree. This

algorithm combines entropy optimization with Heckerman's similarity networks

modeling scheme [10]. Cooper and Herskovits [2] have developed an algorithmic
method of empirically inducing probabilistic networks, which utilizes a Bayesian

framework to assess the probability of a network topology given a distribution

of cases. A heuristic technique is provided to optimiz e the search for probable



topologies.Simulation resultshave shown that a small37-node, 46-1inknetwork

can be derived with 3,000 cases.

In thispaper, we presenta new rule-learningalgorithm for inducing impli-

cationrelationsbased on a small number ofempiricaldata samples. The major

differencebetween Cooper and Herskovits'approach and ours isthat theirap-

proach focuseson topologicalinduction accuracy while ours isconcerned with

the accuracy of inferencesbased on an induced network, without regards to the

topologicaluniqueness.

'Our approach to implicationnetwork inductionhas been implemented in a

toolbox calledKAT, which containsseveralmodules; namely empiricaldata ac-

quisitioninterface,implicationruleelicitationmodule, network validationmod-

ule,optimal observationdetermination module, and embedded diagnosticinfer-

encing engine which implements uncertaintyreasoning schemes.

Our approach toimplicationinductiondraws on the previouswork on empir-

icalconstructionofinferencenetworks [5].The presentstudy furtherextends the

earlierwork by augmenting the implicationswith certaintymeasures. Another

relatedwork isthe development ofa predictionlogicbased on a contingency-table

ofprobabilities,asproposed by Hildebrand etal.[11].In theirwork, the emphasis

was on the definitionand computation ofprecisionand accuracy ofpropositions

represented.An analogy was made between contingency tablebased prediction

logicand formal propositionlogic.

To validatetheimplicationnetworks generatedfrom KAT, we have conducted

a seriesofempiricalexperiments to examine the performance of evidentialin-

ferencingwith the induced networks. The chosen problem domain is medical

diagnosis;thistask sharesmany commonalities with other real-worldproblems

as described in [1] [8] and has been in part inspired by earlier studies on knowl-

edge space theory (KST) by Doignon and Falmagne [6]. The KST presents an

interesting set-theory interpretation of knowledge states as well as its mathe-
matical foundations. In our present framework, unlike the one by Doignon and

Falmagne, the interdependencies among knowledge units are the closures under
union and intersection, which can be correctly represented with a directed infer-

ence network, ttence, our implication networks representation (i.e., an instance

of implication networks) can be viewed as a proper subset of the knowledge space

representation.

In this paper, we examine the effectiveness and exactness of inferences with

statistically induced networks. Our claim is that the proposed network induc-

tion method is capable of generating logically and empirically sound implication-

based domain representations useful in predicting unobserved events upon re-

ceiving certain partial information. While validating the networks in several

real-w0rld task domains, we attempt to demonstrate the generality of the al-

gorithmic rule induction and reasoning approach in solving problems where a

complete set of events is too difficult to observe or the diagnostic judgments are
subject to human errors.



2 Implication Network Induction

In the present work, we refer the term implication network to a directed acycllc
graph in which the nodes represent individual event variables or hypotheses, and

the arcs signify the existence of direct implication .(e.g., influence) among the
nodes. The value taken on by one event variable is dependent on the values taken
on by all variables that influence it. Each value indicates the likelihood of an
unobserved event. The value is updated every time new information is obtained
(e.g., some symptom is observed). The strengths of the event interdependencies
are quantified by functions (e.g., belief functions), as weights associated with the
arCS.

Formally, an implication network can be represented as an ordered quadruple:

Net= (_;,Z,_,p.,.), (1)

where Af is a finite set of nodes and 2"is a finite set of arcs. ac is the network
induction error and Pm_, is the minimal conditional probability to be estimated

in the arcs. Furthermore, each induced implication rule can be specified by the
following quadruple:

Xmv = (N..t,N.o_,W,,V?I), (2)

whereWl and I_Iareweightfunctionsthatmap thepairsofantecedent-consequent

nodes,i.e.,Na,t and Nco,_l,and theirnegationstoarealnumber between0 and

I,respectively.That is,

w, : No.,× Nc_, -,[0,I]. (3)
W, :"Neonet × "_N..,-_ [0, 1]. (4)

B "_B

A / Nx^s Nx^_s

--A [ N_A^B N-A^_B

Fig. 1. contingency table where ceRs indicate the number of co-occurrences.

2.1 The Rule-Elieitation Algorithm

The basic idea behind the empirical construction is that in an ideal case, if
there is an implication relation A =_ B, then we would never expect to find the
co-occurrences as in Figure 1 that event A is true but not event B, from the
empirical data samples. This translates into the following two conditions:

P(BIA) = I (5)



P(-_A[-_B) = 1 (6)

In reality, however, due to noise such as sampling errors, we have to relax Condi-

tions 5 and 6. KE takes into account the imprecise/inexact nature of implications
and verifies the above conditions by computing the lower bound of a (1 - aerro,)

confidence intervalaround the measured conditionalprobabilities.Ifthe verifi-

cationsucceeds,an implicationrelationbetween the two eventsisasserted.Two

weights are associatedwith the relationI,which correspond to the relations'

conditionalprobabilitiesP(BIA) and P(",A[-_B).In fact,theseweightstogether

expressthe degree ofcertaintyinthe implication.Once an implicationrelation

can be determined, another logicaloperator "¢_" isreadilydefinedas follows:

(A s) ((B A) (B A)) (7)

The elicitationd dependences among the nodes requires consideringthe

existence(ornonexistence)ofdirectrelationshipsbetween pairsofrandom vari-

ablesina domain model. In theory,thereexistsixpossibletypes ofimplications

between any two nodes or events.

The implicationruleelicitationalgorithm can be statedas follows:

The Rule-Elicitatlon Algorithm

Begin
set an arbitrary level ac and a minimal conditional probability p,._. (this test can be

repeated for different _c and p._,_. An example is _c ffi 0.05 and p,n,. = 0.5).
for nod.,, i E [0, n.n_= - 1] and nodej, j E[i + 1, ....ffi]

for all empirical case samples
f ]

compute a contin encv table T,_ _ N11 NI2 [where Nzl, Nl2, N21, N22 are the
g _ _IN2, N_21

numbers of occurrences with respect to the following combinations:

N11 : nodei = TRUEA nodej = TRUE
N12 : nodet = TRUEA nodej = FALSE
N21 : node_ = FALSEA nodej = TRUE
N_2 : nodel = FILSE A nodej = FALSE

for each rule type/_ out of the six possible cases.
test the following inequality:

PCx < N.._.__.,) < ac (8)

based on the two lowertailsofbinomialdistributionsBin(N, p,._,,)and
Bin(N, p,.,.),where N and N denote the occurrencesof antecedent

satisfactionsinthe two inferencesusinga type k implicationrule,i.e.,in

modv_ ponen_ and rnod,_tollcn_,respectively,ac isthe alpha error(or

significancelevel)ofthe conditionalprobabilitytest.
ifthe testsucceeds

return a type k implicationrule.

With respectto the two directionsof the inference,i.e.mod_ ponen_ vs. mod_
tollena.



endif

endfor

endfor

endfor
End

Here itisassumed that the conditionalprobabilityisp in each sample, and

alln samples areindependent. IfX isthe frequency of the occurrence,then X

satisfiesa binomial distribution,i.e.,X ~ Bin(n,p), whose probabilityfunction

px (k) and distributionfunctionFx (k) are given below:

px(k) -- (_) ptq T'-_

II

j---o

(9)

(10)

where p --1 - q.

AIA BI=_ C2V Cs

AIA B2=_ CsV Cs

A_A Bs=_ CIV C2V Cs
A2A _ =_ C2

C_ C2Cs

AIABI IODQI
m

AI A B2

A_ A BI

A2 A B2

Fig.2. A contingencytablewhere cellsindicatethe number ofco-occurrencesinthe

caseofmultivariateimplications.

Thus, the test of hypothesis for A _ B can be obtained by computing by a
lower tailconfidenceintervalover a binomial function:

NA^ _iD I_ Ip(X _<NA^.a) = p"-'(1 -p)' (11)
_----0

where n has the same definition as above, and where p is set to the desired

minimal conditional probability. This formula represents the probability that

as small a number as X of unpredicted results would be observed if the true

probability of a predicted result were exactly p. The smaller the probability

given by the formula is, the less likely it is that the true probability of a predicted

result is lesathan p.

From a theoretical point of view, we could increase the dimensionality of the

distribution to incorporate all variables relevant to the problem in question and



allow the variablesto be multivariateas illustratedin Figure 2.In such a case,

the probabilityfunctionto be consideredbecomes:

px_.....x.(kl,...,k,)= kl!_-.k,! _ " (12)

From a practical point of view, this would also introduce exponential compu-

tational complexity. In the present study, we concentrate on bivariate variables
pairudse, which reduces the scope of problem for which probabilities have to be

eliaited. Often this is known as naive Bayes.

2.2 An Example of Positive Implication Induction

The following section illustrates how the above algorithm is used to verify the

existence of a positive implication rule: A =_ B.
In the first step of positive implication rule induction, a two-dimensional

contingency table for variables A and B is compiled. As computed from an

empirical data set, the cells in the contingency table contain the observed joint

occurrences for the respective four possible combinations of values. Table I shows

an example of the contingency table with respective co-occurrences of variables

A and B in a hypothetical data set.

B ..-IB

A 20 (NA^B) 1 (NA^.B)

"_A 8 (N_AAB) 1 (N-A^_B)

Table 1. Distribution of observed occurrences

where No. denotes the occurrencesofthe respectivesituations.The totalnum-

bers of A and -_B can be derivedaccordinglyas follows;

NA = NA^B ÷ NA^-_B = 21

N._s = NA^-,8 + N-,A^-_8 = 2

Statistical Tests for Implication Existence

The second step of our induction method consists of an assessment of the nu-

merical constraints imposed by A _ B. More specifically, the assessment is based

on the lower tails of binomial distributions BIn(NA, P..n) and Bin(N-.B, pmin)

to test measured conditional probabilities P(B [ A) and P(-_A [ -_B), where

NA = NAAB + NAA_B, N-,B - NA^-,B q" N-,A^-.B, and Pmin iS an arbitrary

number chosen as the minimal conditional probability for an implication relation.

For each of the two binomial distributions, we check to see whether Inequality 8
can be satisfied.



Suppose that in this example, p,,,,_ = 0.85; ae - 0.20. Accordingly the
binomial distribution for testing P(B I A) can be written as: Bin(21, 0.85). The
computation of the lower bound proceeds as follows:

P(, _<NA^_Si = P(= < 1)
= P(x = 0) + P(x = 1)

-- 0.155
f

hence

P(= < NA^_B) < a,

where symbol (_) represents the number of combinations of k in j. The in-

ference with A =_ B in the modus Panen_ direction is significant with confidence
level (1 - ae). In a similar way, given Bin(2, 0.85), the test for P(-_A I --B)
yields:

hence,

P(z __NA^_B) _ ae

Since Inequality 8 for the test of P(-_A]-,B) is not satisfied, A =_ B cannot be
used for modus tollen.s inference. Hence, the positive implication rule A =_ B is

rejected. The overall, worst-case time complexity of inducing an implication
network with the above algorithm is O(n,na= 2) where area= is the number of
nodes for modeling the domain.

3 Empirical Cases

This _ction describes the empirical data used in a series of experiments aimed

to investigate the effectiveness and exactness of induced implication networks in
diagnosticreasoning.The selectedtask domain ismedicaldiagnosis.

In the currentstudy,we model the differentpossibleknowledgestatesby

a partialorder.Although thisformalismcouldnot fullyrepresentallpossible

knowledgestates,itcapturesa largepartof the constraintson the ordering

among KU and can be usedforthepurposeofautomaticknowledgeassessment

[3],[7].The data used to induceimplicationnetworksformedicaldiagnosis
consistsofa setofattributeswhich arecontinuousvariables.In orderto build

a network,theseattributeswere firsttransformedintobivariate(i.e.,binary)

valuesusingthresholds.



3.1 Cancer Diagnosis

The medical diagnostic method developed in this work was fL-st validated using

the empirical cancer data samples collected from 69 healthy people and 31 cancer

patients. Each sample contains the information on 22 chemical residues (i.e.,

attributes) found in a bioposy. In order to build the network, we first transformed

the ordered continuous variables, i.e., trace element concentrations, into two-

valued Boolean variables, by means of thresholding.

Zn =_ Mg 0.7826 0.7959 Cd =_ Zn 0.7096 0.8333 Mg =_ Ca 0.8823 0.8775

Zn =_ Ca 0.8695 0.8775 Cd =_ Ni 0.8064 0.8846 Mg =_ Cu 0.7058 0.7272
Zn =_ Cu 0.8956 0.7454 Cd =_ Co 0.7096 0.8571 V =_ Ni 0.7058 0.8076
Co =_ Ni 0.7297 0.8076 Cd =_ Cu 0.8064 0.8909 Cu =_ Ca 0.7555 0_7755

Table 2. The original trace concentration data samples.

The derived data set was used to induce the network. Tables 3 and 4 show

a few examples of the original and the derived data set samples, respectively.
Table 3.1 presents a subset of the induced implication network in the form of

pairwise gradation relations.

Zn Pb Ni _ C,d Mn Cr M_ V AI C& Cu Ti Se Cate|.
237.84 8.50 1.532 1.045 0.590 1.053 1.717 223.62 1.696 0.010 1806.75 8.71 0_732 0.00I 1
203.15 12.70 2.362 1.707 0.898 1.347 1.204 48.33 0.811 4.189 405.20 13.92 0.689 0.001 1

266.34 4.44 0.085 1.013 0.382 2.151 0.340 47.?3 0.010 13.137 367.92 17.10 2.896 0.003 2

Table 3. The transformed trace concentration data samples (subset).

Zn Pb Ni Co Cd Mn Cr M_ V AI Ca Cu Ti $e Cate_or_
01.00 01.00 01.000 01.000 01.000 1.000 1.000 01.00 1.000 0.000 01.00 00.00 1.000 0.000 1
01.00 01.00 01.000 01.000 01.000 1.000 1.000 00.00 1.000 0.000 00.00 01.00 0.000 0.000 1
01.00 01.00 00.000 01.000 01.000 1.000 1.000 00.00 0.000 1.000 00.00 01.00 1.000 0.000 2

Table 4. Examples of the induced poaitive implication rules (subset).

4 Evidential Inferences

To validatethe accuracy ofthe evidentialinferencesgenerated from implication

networks,we have conducted a seriesofexperiments insimulateddiagnostictask

settings.In particular,we used constructedimplicationnetworks as the basis

for evidentialinferences.Each simulationrun consistedof selectinga portion

of a subject'ssample data and propagating evidentialsupports throughout the
network.



4.1 Experimental Method

There exist various interpretations of the imprecision measure associated with

an implication rule [13]. Each interpretation dictates the way in which inferences

are to be performed. Bayesian inference is based on the mapping of an implica-

tion relation into conditional probabilities [15]. Taking an implication A =_ B for

example, updating the probability would be based upon P(B [ A), which should
approach 1.0 if the implication is strong. The difficulty with this scheme stems
from the fact that if further observation of C is obtained and ff there is a relation

C =_ B, then there is a need to update the value of B based upon P(B I A, C),
and so on. As more observations occurs, the conditional probabilities become

practically impossible to estimate, whether subjectively or from sample data.

To address this difficulty in a Bayesian belief network, the assumption of inde-

pendence is made between individual implication relations. In the present work,

we have applied the Dempster-Shafer (D-S) method of evidential reasoning to

propagate supports (whether confirming or disconfirming) throughout the im-

plication network. The D-S inferencing scheme may be regarded as a complex

theoretical deviation from the Bayesian theory. According to the D-S scheme,
the set of possible outcomes of a node is called the frame o[ discernment, de-

noted by 8. If the antecedents of a rule confirm a conclusion with degree m, the

rule's effect on belief in the subsets of O can be represented by so-called proba-

bility masses. In our bivariate case of knowledge assessment, there are only two

possible outcomes for each node, q_, that is, _ = (known,-.known}.

The D-S scheme provides a means for combining beliefs from distinct sources,

known as Dempster's rule of combination. This rule states that two assignments,
corresponding to two independent sources of evidence, may be combined to yield

a new one, that is,

m(X) = k _ m,(X,)m2(Xj) (13)
X_NXjfX

where k is a normalization factor. Another evidential inference methodology,

called Certainty Factors (CF) as previously implemented in MYCIN [1], was
also applied in this study. This approach may be viewed as a special case of

the D-S evidential reasoning. The two approaches differ from each other only in

combining two opposite beliefs (i.e., one confirming and the other disconfirming).

4.2 Results in Medical Diagnosis

This section presents the empirical results of evidential inferences using the

databases of cancer diagnosis instances as mentioned in Section 3. In each of

the two experiments, the numeric-valued attributes were first discretized into

binary values which were then used for both network induction and inferencing
validation.

In the case of cancer diagnosis, 40 patient samples were compiled to induce

the implication network with P,_n > 0.5 and ac < 0.30. The generated network



contains87 implicationrelations.Another setof60 patientsamples was used to

validatethe evidentialinferencing.

During the validation,a certainpercentage of attributesin each testcases

were randomly sampled, and the restof the attributeswere inferredfrom the

implications.Upon the completion ofinferencing,a pairofthresholds(u,v) (i.e.,

bi-directionalthresholds)was definedto filterthe numeric-valued weights.That

is,ifa specificnode has a weight w > v,then the node isbelievedto be TRUE. On

the other hand, if_v<_u,the node isbelievedtobe FALSE (i.e.,the corresponding

attributedoes not exist).The resultingfilteredpredictionswere compared with

the actualvaluesin the testsamples.

4.3 [Experiment E-51 Cancer Diagnosis

Globally speaking, given the distributions of evidentially predicted weights and

initial weights with respect to various bi-directional thresholds, it can be ob-

served that in the guessing case, both the correctly predicted nodes and the
errors were almost the linear functions of the observation rate. However, in the

evidential inferencing case, the shapes of these two rate profiles were changed,

indicating that as the observation increased, additional nodes were added to

both the correct predictions and the errors. It should also be noted that the

error rates in the inferencing case were quickly stablized after the amount of

observation exceeded a certain percentage.

To further compare the results of inference-based prediction and initial weight-

based guessing, a pair of bi-directional thresholds was picked up from each of

the two figures such that the selected two cases would have similar error rates.

At 0% sampling, the inferencing case predicted about 45% due to its conser-

vative thresholding. However, as the observation increased, correct predictions

were quickly added along with some wrong predictions. The evidential inferenc-

Lug resulted in a consistently better performance in evaluating the unobserved

nodes when the observation sampling exceeded 18%, as compared to the pure

initial weight based guessing. For instance, at 45% observation, the inferencing
method correctly predicted 4% more attributes than the guessing method.

5 Entropy-Driven Diagnosis Based on Induced Networks

In diagnosticreasoning,variousrulesmay be appliedtodetermine which node is

to be observed next. One approach isto randomly choose symptom nodes from

a complete symptom set that spans allthe symptoms in the diagnosticstruc-

ture,as studied in the previous section.Another approach isto apply entropy

optimization and choose the most informativenode. This sectioninvestigates

the performance of entropy-drivenevidentialinferencesbased on the induced

implicationnetworks.



5.1 Experimental Method

In the following experiments, the expected information yield of each individual

node over all the possible outcomes is computed and weighted by the likelihood
of each outcome. The node that has the maximum expected information yield

is chosen as the potentially most informative one, which is to be observed next.

Formally, the expected information yield of an observation is defined as follows:

Ah = Ecur(net) - Ee,p(net)

= Ec_,,'(net) - [piE(net I nodei --- TRUE) + (1 - pi)E(net [ nodet = FALSE)]
n_lll Ig_au

= p, logp + logp )- (p.logpk+ logp )
k----1 kffil

where E_,rre,u (net) denotes the current network entropy. E(net I *) denotes the

updated network entropy having observed nodes, p_ is the current probability

of nodei = TRUE. /¢h and p_ are the updated probabilities of a network node_,
having observed that nodei = TRUE and nodei = FALSE, respectively.

In what follows, we examine the diagnostic performance at the level of in-

dividual nodes. The performance is analyzed with respect to three observation

modes, which are:

(1) inferencesbased on the entropy-drivenobservation:nodes are given initial

probabilities(i.e.,averaged weights).Ifa node isobserved to be TRUE, it

isassigned 0.9 and 0.1 otherwise,taking intoaccount the random errorin

the originaldata.Inferencepropagationisperformed based on that observed

node;

(If)inferencesbased on random observation(asin the previous section):same

as (I) but nodes are chosen at random; and,

(III) no inference condition (or guessing) : same as (II) but no inference propaga-

tion is performed.

Since the comparison between the D-S and Certainty-Factorsapproaches,as

presented in the preceding section,does not revealany significantperformance

difference,here we shallfocus on the methods of observationw/th the D-S ev/-

dentiaI inlerencing only.

5.2 [Experiment E-11 J Cancer Diagnosis

This section examines the performance of evidential inferences under entropy-

driven observation mode, using the empirical cancer database. For the sake of

comparison, the networks to be tested in the following two experiments are
the same as the ones used in the random mode observation as described in

Section 4.2. During the validation, the inferred attributes were accepted based

upon a pair of thresholds (u, v) for filtering the numeric-valued weights, and then

compared with the actual discretized attribute values in the samples.



Unlike the distribution mentioned before in experiment E-5, the distributions

of the weight-bazed-guessing-only mode have become non-linear to the observa-
tion rate. This indicates that the entropy-driven observation tends to pick up
the nodes with relatively higher uncertainty. At the same time, the inferences
with entropy-driven observation added more information than the purely weight-
based guessing with the same observation mode, revealing that the selection of
the nodes was not based purely on the present weights of the nodes but also
their connectivities in the network.

A main result may be stated that if the entropy-driven observation sampling
is h_ore than 13%, the performance of inferencing is consistently better than that
of guessing. For instance, at 45% observation, the inferencing scheme produces
11% additional correct predictions as compared to the pure guesses.

It is worth mentioning that for evidential inferencing with two different ob-
servation modes, i.e., entropy-driven vs. random, the results are significantly
different. In the former observation mode, the correctly predicted nodes at 45%
observation can reach up to 87_, whereas the latter produces around 81% given
the same amount of observation. In the random mode, it requires at least 18%
observation in order for the inferencing scheme to show better performance. In
the present entropy-driven mode, this percentage is further lowered to 13%.

6 Conclusion

In this paper, we have described a series of empirical validation experiments
which examined the performance of evidential inferences based on implication
networks that were algorithmically induced by a rule learning tool (KAT). In the
experiments, building implication networks for evidential inferencing in various

real-world diagnostic task domains (as shown in the experiments, some may
have less strong implications than the others) is translated into the task of
statistically induction, from a small number of individual instances or empirical
data samples (e.g., the sizes of the samples for the experiments are respectively
47, 20, 40, and 153). Generally speaking, evidential inferencing with such induced
networks is effective in generating valid predictions about unobserved events such
as knowledge units and diagnostic attribute values.

This study also explored an entropy-driven diagnostic method and compared
its performance with a random sampling method. The result of comparisons has
shown that while both the random and the minimum-entropy-based methods are

desirable, the latter is in general far better for reducing uncertainties, especially
when the observation rate is more than 13% (e.g., as shown in Experiments 7,

11, and 14).
As validated in the cancer experiments, the binary representation of diag-

nostic attributes enables the induction of valid implication networks, which are

useful not only in the predictions of unobserved attributes but also in patient
diagnostic classification. The conducted experiments also reveal that the impli-
cation network is less sensitive to the particular inferencing scheme performed.
In addition to the D-S and Certainty Factors schemes of evidential inferenc-



ing, we have also implemented and appliedother schemes such as the Bayesian

approach, with very littlevariationin the performance.
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